

Important reactions of Xenon for JEE main/Advanced NEET and IISER Aptitude Test

Designed by Dr. Anuradha Mukherjee

The first compound with noble gas was made by Bartlett with Xenon (Xe)

Xenon (Xe) is down the group of periodic table (Period 5) and low ionization energy compare to other noble gas

Xenon ionization energy 1170 kJ/mol is almost same to oxygen 1165 kJ/mol

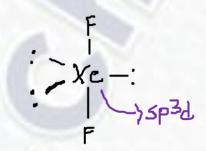
Radon (Rn) also has less ionization energy than Xe, but Rn is radioactive and not stable isotope, so much work with Rn is not possible. Only RnF₂ is known

Ref: J. D. LEE (fifth edition) page no 639

Xeon Chemistry

Xenon reacts directly with fluorine at 400 °C temperature in a sealed nickel vessel and the products depend on the Xe : F ratio All these fluoride compounds are white solid

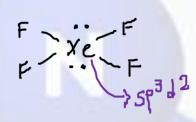
Xe +
$$F_2$$
 \longrightarrow 2Xe F_2 Xe + 2 F_2 \longrightarrow Xe F_4 (2:1 mixture)


Xe + 3 F_2 \longrightarrow Xe F_6 (1:20 mixture)

XeF₄ reacts with F₂O₂ and produces XeF₆ and O₂

$$XeF_4 + F_2O_2 \longrightarrow XeF_6 + O_2$$

Dioxygen difluoride F_2O_2 acts as a powerful fluorinating agent, adding fluorine to xenon tetrafluoride


Shape of XeF₂

Three LPs on Xe
Molecular geometry:
Linear

Shape of XeF₆

Shape of XeF₄

Two LPs on Xe
Molecular geometry:
square planar

One LPs on Xe
Molecular geometry:
distorted octahedral

Xenon compounds	Oxidation state of Xe
XeF ₂	+11
XeF ₄	+IV
XeF ₆	+VI
XeO ₃	+VI
XeO ₄	+VIII
XeO ₂ F ₂	+VI
XeOF ₄	+VI
XeO ₃ F ₂	+VIII

Fluorination using XeF₂/XeF₄/ XeF₆

Fluorides are strong oxidizing and fluorinating agent. They react quantitively with hydrogen and produce HF and Xe gas

$$XeF_2 + H_2 \longrightarrow Xe + 2HF$$
 $XeF_4 + 2H_2 \longrightarrow Xe + 4HF$ $XeF_6 + 3H_2 \longrightarrow Xe + 6HF$

XeF₄ also can fluorinate SF₄, Pt metal

$$XeF_4 + 2SF_4 \longrightarrow Xe + 2SF_6$$
 $XeF_4 + Pt \longrightarrow Xe + PtF_4$
 $XeF_2 + MoO_3 \longrightarrow O_2 + Xe + MoF_6$ $XeF_2 + S_8 \longrightarrow Xe + SF_6$

XeF₂ can replace SiMe₃ from an organometallic compound with F. This is the way Fluorine can introduce in benzene ring

$$\frac{\text{SiMe}_3}{\text{BF}_3.\text{OEt}_2} \frac{\text{XeF}_2/\text{CH}_2\text{CI}_2}{\text{BF}_3.\text{OEt}_2}$$
 trimethyl(phenyl)silane Fluorobenzene

$$Mo(CO)_6 + XeF_2 \longrightarrow MoF_6 + Xe + CO$$

Ref: https://www.arkat-usa.org/get-file/49472/

Hydrolysis of xenon fluoride

1. XeF₂ reacts slowly with water undergoes following reaction

$$2XeF_2 + H_2O \longrightarrow 2Xe + 4HF + O_2$$

2. XeF₄ reacts violently with water gives xenon trioxide which is highly explosive

$$3XeF_4 + 6H_2O$$
 \longrightarrow $2Xe + XeO_3 + 12HF + 3/2O_2$

3a. XeF₆ also reacts violently with water. Complete hydrolysis gives highly explosive xenon trioxide

$$XeF_6 + 6H_2O \longrightarrow XeO_3 + 6HF$$

3b. XeF₆ also undergoes partial hydrolysis and gives colorless liquid xenon oxofluoride XeOF₄

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$

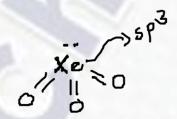
Synthesis of xenon oxofluoride

1. XeF₆ undergoes partial hydrolysis and gives colorless liquid xenon oxofluoride XeOF₄

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$

2. XeF₆ also gives xenon oxofluoride XeOF₄ after reacting with silica or glass

XeF₆ is so reactive that it cannot be stored in glass vessels because it readily reacts with the silicon dioxide. That's why XeF6 is stored in Nickel bottle

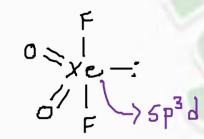

$$XeF_6 + SiO_2 \longrightarrow XeOF_4 + SiF_4$$

3. Explosive solid XeO₃ reacts with XeF₆ and gives xenon oxofluoride XeOF₄

$$2XeF_6 + XeO_3 \longrightarrow 3XeOF_4$$

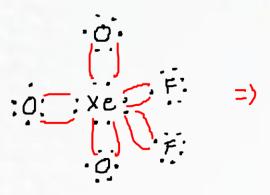
 $XeOF_4 + XeO_3 \longrightarrow 2XeO_2F_2$

Xenon oxodifluoride


Shape of XeO₃

One LPs on Xe
Molecular geometry:
Trigonal pyramidal

Shape of XeO₂F₂


One LPs on Xe
Molecular geometry:
See Saw

Shape of XeOF₄

One LPs on Xe
Molecular geometry:
square pyramidal

Shape of XeO₃F₂

No LPs on Xe Molecular geometry: Trigonal bipyramidal

Reactions of XeO₃

1. Explosive solid XeO_3 reacts with XeF_6 and gives xenon oxofluoride $XeOF_4$

$$2XeF_6 + XeO_3 \longrightarrow 3XeOF_4$$

2. xenon oxofluoride XeOF₄ reacts with XeO₃ gives XeO₂F₂

$$XeOF_4 + XeO_3 \longrightarrow 2XeO_2F_2$$
Xenon oxodifluoride

3. XeO₃ is soluble in water but does not ionize. In alkaline solution it forms xenate ion. Here oxidation state of Xe is +VI

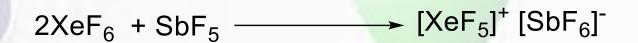
4. Xenate (Xe +VI) ion slowly disproportionate in solution and gives perxenate (Xe +VIII) and Xe

$$2[HXeO_4]^- + 2OH^ \longrightarrow$$
 $[XeO_6]^{4-} + Xe + O_2 + 2H_2O$ perxenate ion

Complexes of Xenon fluoride

XeF₂ acts as a fluoride donor and forms complexes with covalent compounds like SbF₅, PF₅, AsF₅

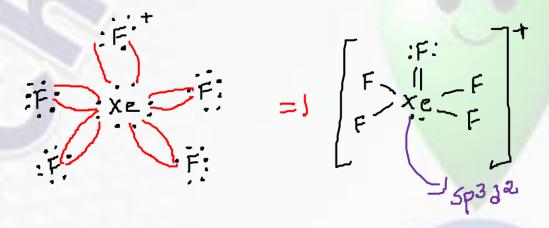
XeF₂ also reacts with transition metals like NbF₅, TaF₅, RuF₅


Structures are XeF₂. MF₅ or [XeF]⁺ [MF₆]⁻

XeF₆ also reacts with SbF₅, PF₅, AsF₅ PF₅, AsF₅, SbF₅

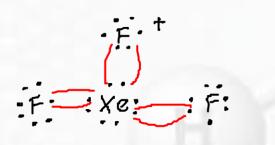
Examples XeF₆. SnF₆, XeF₆. AsF₅

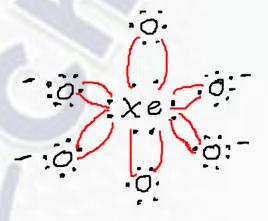
Write down products when XeF₆ reacts with SbF₅

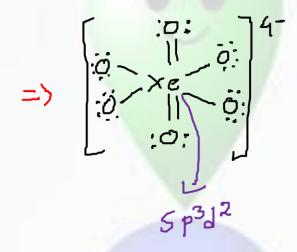


Write down products when XeF₄ reacts with SbF₅

$$2XeF_4 + SbF_5 \longrightarrow [XeF_3]^+ [SbF_6]^-$$

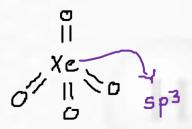

Shape of XeF₅⁺


One LPs on Xe
Molecular geometry:
square pyramidal


Shape of XeF₃⁺

Two LPs on Xe
Molecular geometry: T
shaped

Shape of XeO₆⁴-



No LPs on Xe Molecular geometry: Octahedral

Shape of XeO₄

No LPs on Xe
Molecular geometry:
Tetrahedral

Key Points

Noble gases like He, Ne, Ar, Kr are inert. They don't form any compounds

Xe is down the group and has lower ionization energy, thus make compound with highly electronegative elements like fluorine and oxygen only

Xe has d orbital, so Xe can form sp³d, sp³d² orbitals and form high coordination number with elements with high electronegative elements

All the best for the preparation of inorganic chemistry